
 2007-2010 OpenTravel™ Alliance www.opentravel.org

OpenTravel™ Alliance
XML Schema Design Best Practices

Version 3.08
March 2010

OpenTravel™ Alliance Schema Design Best Practices Specification Page 2

 2007-2010 OpenTravel™ Alliance www.opentravel.org

Contents

1 OpenTravel XML Schema Design Best Practices .. 4
2 XML Standard Specifications... 5
3 Best Practices.. 6

3.1 Scope.. 6
3.2 Schema Design Component Parts and Roles ... 6

4 OpenTravel XML Schema Design Guidelines ... 7
4.1 Tag Naming Conventions .. 7

4.1.1 Mixed Case .. 7
4.1.2 Underscore... 7
4.1.3 Acronyms... 7
4.1.4 Word Abbreviations... 7
4.1.5 Tag Length... 8
4.1.6 Complex Type Tag Names .. 8
4.1.7 Simple Type Tag Names 1 .. 8
4.1.8 Simple Type Tag Names 2 .. 8
4.1.9 Naming of Elements Based on Simple or Complex Types.. 8
4.1.10 Naming of Attributes Based on Simple Types .. 8
4.1.11 Common Suffixes.. 9
4.1.12 Standard Suffixes .. 9

4.2 Root Element, Message, and File Naming Conventions.. 10
4.2.1 Root Element Naming ... 10
4.2.2 Use of Notif in Root Element Name.. 11
4.2.3 Message XML Schema File Naming... 11
4.2.4 File naming for collections of Attribute Groups, Simple, and Complex Types 11
4.2.5 Naming of XML Schema Files that Contain Common Components 11

4.3 Use of Elements and Attributes .. 11
4.3.1 Elements vs. Attributes.. 11
4.3.2 Number of Attributes per Element .. 12
4.3.3 Encapsulating Element .. 12
4.3.4 Default Values ... 13

4.4 Use of XML Schema.. 13
4.4.1 OpenTravel Specification Uses XML Schema.. 13

4.5 Global vs. Local Element Types .. 13
4.5.1 Simple and Complex Types... 14
4.5.2 Type Attribute vs. Ref Attribute.. 14
4.5.3 Attribute Groups .. 14

4.6 Namespaces.. 15
4.6.1 OpenTravel Namespace... 15
4.6.2 No Namespace for Common XML Schema Files ... 15
4.6.3 Use of OTA Namespace in Instance Documents... 16

4.7 Versioning XML Schemas... 16
4.7.1 Version Attribute in XML Schema.. 16
4.7.2 Version Attribute in Common XML Schema Files ... 16
4.7.3 Version Attribute in XML Instance Documents.. 17
4.7.4 ID Attribute in Message and Common XML Schema .. 17
4.7.5 Use of schemaLocation Attribute .. 17

4.8 Schema Markup and Annotations .. 18
4.8.1 Use of Annotation and Document Elements.. 18
4.8.2 Use of lang Attribute ... 18

OpenTravel™ Alliance Schema Design Best Practices Specification Page 3

 2007-2010 OpenTravel™ Alliance www.opentravel.org

4.8.3 Meaningful Annotations .. 18
4.8.4 Annotation of Typed Elements .. 19
4.8.5 Annotations of Root Elements... 19
4.8.6 Use of “may be”... 20
4.8.7 Reference to Code Tables.. 20
4.8.8 No Use of Processing Instructions... 20

4.9 Enumerations vs. Code Lists.. 20
4.9.1 Use of Enumerations.. 20
4.9.2 Use of Code Lists .. 21

4.10 Code Lists .. 21
4.10.1 Name of Code List Table .. 21

4.11 OpenTravel General ... 21
4.11.1 Required Attributes of XML Instance Root Elements .. 21
4.11.2 Use of TPA_Extensions .. 22
4.11.3 Standard Simple Types vs. OpenTravel Simple Types 22
4.11.4 New Data Types Based on Extending Existing Types.. 22
4.11.5 Simple Type Restrictions .. 23
4.11.6 Deprecation Policy .. 23
4.11.7 License Agreement Documentation .. 24

OpenTravel™ Alliance Schema Design Best Practices Specification Page 4

 2007-2010 OpenTravel™ Alliance www.opentravel.org

1 OpenTravel XML Schema Design Best Practices
The IT Business world has long employed the principles of producing high quality products with
a reduction of product development cost and faster “time-to-market” product delivery. In today’s
global, Internet-ready marketplace, these principles are as critical to the bottom line as ever. One
way that corporations can apply these “increased earning potential principles” is by establishing a
common set of best practice XML and XML Schema guidelines.

The current W3C XML specifications were created to satisfy a very wide range of diverse
applications, which is why there may be no single set of “good” guidelines on how best to apply
XML technology. However, when the application environment can be restricted by corporate
direction or by a common domain, one can determine, by well-informed consensus, a set of
effective guidelines that will lead to the best practice of using XML in that environment.

This document defines the OpenTravel™ Alliance Best Practices Guidelines for all of the
OpenTravel XML data assets. OpenTravel message specifications released prior to the 2002A
Specification release may not follow the guidelines defined in this document.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 5

 2007-2010 OpenTravel™ Alliance www.opentravel.org

2 XML Standard Specifications
Currently, there are several XML related specification recommendations produced by W3C
(http://www.w3.org/Consortium/). This section refers to the W3C recommendations
(http://www.w3.org/Consortium/Process-20010719/) and versions listed below:

 Extensible Markup Language (XML) 1.0 (Second Edition):

 http://www.w3.org/TR/2000/REC-xml-20001006

 XML Schema Parts 0 - 2:

 http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/



 http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

 http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

OpenTravel™ Alliance Schema Design Best Practices Specification Page 6

 2007-2010 OpenTravel™ Alliance www.opentravel.org

3 Best Practices

3.1 Scope
The OpenTravel Best Practices Guidelines cover all of the OpenTravel XML components
(elements, attributes, tag names, and Schema definitions). This document defines guidelines for
all OpenTravel XML data assets.

The general OpenTravel guideline approach is to maximize component (element/attribute) reuse
for the highly diverse and yet closely related travel industry data. This is accomplished by
building messages via context-driven component assembly. An example is the construction of a
‘Flight Leg’ segment from base objects such as ‘Time,’ ‘Date,’ and ‘Location’ (departure/arrival).
The best mechanism that XML Schemas have to support this approach is by encapsulating lower
level components (element and attribute objects) within named type definitions while using (and
reusing) these base components to construct messages.

3.2 Schema Design Component Parts and Roles
The critical XML Schema guidelines that best support the OpenTravel goal of a consistent set of
reusable travel industry message content are listed below:

 Tag Naming conventions

 Root Element, Message, and File Naming Conventions

 Elements and Attributes

 Use of XML Schema

 Global vs. Local Element Types

 Namespaces

 Versioning XML Schemas

 Schema Markup and Annotations

 Enumerations vs. Code Lists

 Code Lists

 General

Each of the items above plays a unique role, supporting a common vocabulary, syntax, and
semantic grammar for XML Schema and XML component (element and attribute) definitions.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 7

 2007-2010 OpenTravel™ Alliance www.opentravel.org

4 OpenTravel XML Schema Design Guidelines
The subsections below form the complete set of OpenTravel XML Schema Design Best Practices
Guidelines. Each guideline is presented as follows:

Guideline: The base rule (or rules) that should be followed for compliance with OpenTravel Best
Practices.

Rationale: OpenTravel general consensus reasoning for the guideline.

Example:
An example (if applicable).

4.1 Tag Naming Conventions

4.1.1 Mixed Case
Guideline: Use mixed case tag names, with the leading character of each word in upper case and
the remainder in lower case without the use of hyphens or spaces between words (a.k.a. Upper
Camel Case (UCC) or “PascalCasing”).

Rationale: This format increases readability and is consistent with common industry practices.

Example:
<FlightNumber> <HotelCode>

4.1.2 Underscore
Guideline: Where the merger of tag name words and acronyms causes two upper case characters
to be adjacent, separate them with an underscore (‘_’).

Rationale: This technique eliminates or reduces any uncertainty for tag name meaning.

Example:
<PO_Box> <ID_Context>

4.1.3 Acronyms
Guideline: Acronyms are discouraged, but where needed, use all upper case.

Rationale: In some cases, common acronyms inhibit readability. This is especially true for
internationally-targeted audiences. However, in practice, business requirements and/or physical
limitations may require the need to use acronyms.

Example:
<AreaID> <PassengerRPH>

4.1.4 Word Abbreviations
Guideline: Word abbreviations are discouraged. However, where needed, use UCC camel case.

Rationale: Abbreviations may inhibit readability. This is especially true for internationally-
targeted audiences. However, in practice, business requirements and/or physical limitations may
require the need to use abbreviations.

Example:

OpenTravel™ Alliance Schema Design Best Practices Specification Page 8

 2007-2010 OpenTravel™ Alliance www.opentravel.org

<FormattedInd> <AcctType>

4.1.5 Tag Length
Guideline: Element and attribute names should not exceed 25 characters. Tag names should be
spelled out except where they exceed 25 characters, when standardized abbreviations should be
applied.

Rationale: This approach can reduce the overall size of a message significantly and limit impact
to any bandwidth constraints.

Example:
The tag: <ShareSynchronizationIndicator> can be reduced to: <ShareSyncInd>

4.1.6 Complex Type Tag Names
Guideline: Complex type tag names should be suffixed with the word “Type”

Rationale: This approach allows for complex types to be easily recognized, which encourages
reuse.

Example:
<CurrencyAmountType> <ParagraphType>

4.1.7 Simple Type Tag Names 1
Guideline: OpenTravel data type simpleType tag names should clearly indicate the pattern that is
used to define the simple type.

Rationale: This approach supports meaningful tag names.

Example:
<Numeric0to4>

4.1.8 Simple Type Tag Names 2
Guideline: All other OpenTravel simpleType tag names should clearly indicate the usage of that
type and should be suffixed with the word “Type”.

Rationale: This approach supports meaningful tag names.

Example:
<RPH_Type>

4.1.9 Naming of Elements Based on Simple or Complex Types
Guideline: Elements that are based on complex or simple types must not be suffixed by
“ComplexType,” “SimpleType,” or “Type.”

Rationale: This technique reserves the “Type” suffix for complex and simple types, which
allows for easy identification and reuse of types.

Example:
<Profiles> of type ProfilesType <RequestorID> of type UniqueID_Type

4.1.10 Naming of Attributes Based on Simple Types
Guideline: Attributes that are based on simple types must not be suffixed by “SimpleType” or
“Type”

OpenTravel™ Alliance Schema Design Best Practices Specification Page 9

 2007-2010 OpenTravel™ Alliance www.opentravel.org

Rationale: This technique reserves the “Type” suffix for complex and simple types, which
allows for easy identification and reuse of types.

Example:
<ID>of type StringLength1to32
<AirportCode> of type UpperCaseAlphaNumericLength3to5

4.1.11 Common Suffixes
Guideline: Use common tag name suffixes for elements defined by similar or common XML
Schema type definitions.

Rationale: This approach supports a consistent syntax and semantic meaning for elements and
attributes.

Example:
<OriginLocation> <DestinationLocation> <ConnectionLocation>

4.1.12 Standard Suffixes
Guideline: The OpenTravel XML Schema attribute declarations should incorporate the
following list of suffixes. These suffixes were taken from the list of Representation Terms found
in the Core Components Technical Specification (CCTS) published by UN/CEFACT1. For
simplicity, a ‘Representation Term’ is referred to here as a ‘Suffix’.

For cases in which the length of an attribute name may exceed the 25 character limit, the Suffix
abbreviation (included parenthetically) should be used since it requires fewer characters.

Suffix Definition

Amount (Amt) A number of monetary units specified in a currency where the
unit of currency is explicit or implied

Binary Object
(BinObj)

A set of finite-length sequences of binary octets. [Note: This
Suffix shall also be used for Data Types representing graphics
(i.e., diagram, graph, mathematical curves, or similar
representation), pictures (visual representation of a person,
object, or scene), sound, video, etc.]

Code A character string (letters, figures, or symbols) that for brevity
and / or language independence may be used to represent or
replace a definitive value or text of a Property. [Note: The term
'Code' should not be used if the character string identifies an
instance of an Object Class or an object in the real world, in
which case the Suffix identifier should be used.]

1 United Nations Centre for Trade Facilitation and Electronic Business Core Components Technical
Specification- part 8 of the ebXML Framework 15 November 2003 Version 2.01. Available on-line at <
http://www.untmg.org/doc_tmg.html>.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 10

 2007-2010 OpenTravel™ Alliance www.opentravel.org

Suffix Definition

DateTime, Date, Time A particular point in the progression of time (ISO 8601). [Note:
This Suffix shall also be used for Data Types representing only a
Date or a Time.]. Examples:

(CCYY-MM-DD);

(hh:mm:ss[.ssss…[Z | +/-hh:mm]]);

(CCYY-MM-DD [Thh:mm:ss [.ssss…[Z | +/-hh:mm]]])

Identifier (ID) A character string used to establish the identity of, and
distinguish uniquely, one instance of an object within an
identification scheme from all other objects within the same
scheme.

Indicator (Ind) A list of exactly two mutually exclusive Boolean values that
expresses the only possible states of a Property. [Note:
Indicated by a Boolean data type.]

Measure (Meas) A numeric value determined by measuring an object. Measures
are specified with a unit of measure. The applicable unit of
measure is taken from UN/ECE Rec. 20. [Note: This Suffix
shall also be used for measured coefficients (e.g., m/s).]

Numeric (Num),

Value,

Rate,

Percent (Pct)

Numeric information that is assigned or is determined by
calculation, counting, or sequencing. It does not require a unit
of quantity or a unit of measure. [Note: This Suffix shall also be
used for Data Types representing Ratios (rates where the two
units are not included or where they are the same), Percentages,
etc.]

Quantity (Qty) A counted number of non-monetary units. Quantities need to be
specified with a unit of quantity. [Note: This Suffix shall also be
used for counted coefficients (e.g., flowers/m²).]

Text A character string (i.e., a finite set of characters) generally in the
form of words of a language. [Note: This Suffix shall also be
used for names (i.e., word or phrase that constitutes the
distinctive designation of a person, place, thing, or concept).]

Rationale: This approach supports a consistent syntax and semantic meaning for OpenTravel
XML Schema attribute declarations, which is where most OpenTravel data is passed.

4.2 Root Element, Message, and File Naming Conventions

4.2.1 Root Element Naming
Guideline: The format of root elements for messages shall be “OTA_” + Vertical name or area
of focus + function + RQ or RS.

Rationale: This format allows for easy identification of message, Vertical, and function.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 11

 2007-2010 OpenTravel™ Alliance www.opentravel.org

Example:
 <OTA_HotelAvailRQ> <OTA_InsuranceBookRS>

4.2.2 Use of Notif in Root Element Name
Guideline: The word “Notif” in a message name indicates that this message does not follow the
normal requirements of a Request/Response transaction. This type of message provides (pushes)
information from the originator to the recipient in support of a trading partner agreement.

Rationale: This technique allows for quick and easy identification of push messages.

Example:
<OTA_HotelResNotifRQ> <OTA_HotelResNotifRS>

4.2.3 Message XML Schema File Naming
Guideline: The .xsd file is given the same name as the root element of the XML Schema.

Rationale: Easily identifies the contents of the .xsd file.

Example:
Root element: <OTA_AirFlifoRQ>
File name: OTA_AirFlifoRQ.xsd

4.2.4 File naming for collections of Attribute Groups, Simple, and
Complex Types

Guideline: CommonType and SimpleType XML Schema files are used to house attribute groups,
simple types, and complex types that are used among multiple messages. Items that apply to a
specific Vertical are housed in a common file that includes the Vertical name.

Rationale: This approach easily identifies reusable components.

Example:
<OTA_SimpleTypes> <OTA_CommonTypes> <OTA_AirCommonTypes>

4.2.5 Naming of XML Schema Files that Contain Common
Components

Guideline: Schema files that are not used as messages by themselves, but contain components
for use in messages, should not contain RQ or RS in the Schema name. These files are primarily
used for maintaining consistency between common message structures, usually in an RQ/RS set
and its Notif counterparts.

Rationale: This approach allows for easy differentiation between messages and message
components.

Example:
<OTA_Profile> <OTA_HotelReservation>

4.3 Use of Elements and Attributes

4.3.1 Elements vs. Attributes

OpenTravel™ Alliance Schema Design Best Practices Specification Page 12

 2007-2010 OpenTravel™ Alliance www.opentravel.org

Guideline: For a given OpenTravel data requirement, the preferred method is to represent that
data as an attribute. The data is represented as an element if and only if:

 it is not atomic (i.e., it has attributes or child elements of its own) OR

 the anticipated length of the data is greater than 64 characters2 OR

 the data requires a choice or branch within the schema OR

 it is likely that the data in question will be extended in the future

Rationale: The intention is to create a consistent OpenTravel message design approach and to
reduce the overall message size as well as avoid the potential of tag name collisions.

Example: In the following example, ‘LocationDescription’ is defined as an element since the
text it contains is greater than 64 characters. ‘LocationCode’, however, is defined as an
attribute since it contains a 3 character code and is not likely to be extended.

Element:
<LocationDescription>Five miles South of highway 85 and Main St. intersection next to
Town Square Mall</LocationDescription>

Attribute:
<ArrivalAirport LocationCode=”MIA” />

4.3.2 Number of Attributes per Element
Guideline: Element tags should not be overloaded with too many attributes (no more than 10 as a
rule of thumb); instead, encapsulate attributes within child elements that are more closely related
(or more granular). This should be done for those attributes that are likely to be extended by
OpenTravel or by specific trading partners.

Rationale: This approach maintains the built-in extensibility that XML provides with elements
and is necessary to provide forward compatibility as the specification evolves. It also provides a
consistent guide to the level of granularity used to compose OpenTravel Schema objects (or
fragments).

4.3.3 Encapsulating Element
Guideline: XML element containers should be used for repeating elements if the XML Schema
'maxOcc' attribute exceeds 5 repetitions. The encapsulating element container is optional if the
XML Schema 'maxOcc' attribute is less-than or equal to 5. However, a single XML <element>
container can be used for "simpleType" repeating content (via the XML Schema "list" construct).

OpenTravel work groups have the option to override this guideline if:

1) Adding the container to existing repeating elements would break backward
compatibility.

2) The work group believes that, in practice, there will be minimal instances of messages
that will use more than 5 occurrences, such that adding a container adds an unnecessary
layer.

With respect to this guideline, an OpenTravel work group can remove existing containers only
when backwards compatibility is already being broken.

Rationale: This technique provides consistency for repeating data fields.

2 URLs are considered to be less than 64 characters.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 13

 2007-2010 OpenTravel™ Alliance www.opentravel.org

Example:
 complexTypes -

 <States>
 <State country="US">NY</State>
 <State country="US">FL</State>
 <State country="US">CA</State>
 </States>

 simpleTypes -

 <States>NY FL CA</States>
or
 <Location RegionStates = "NY FL CA"/>

4.3.4 Default Values
Guideline: Default values must not be used.

Rationale: This approach prevents the insertion of data following the processing of instances
against schemas. Schema processing is to be used only for validation purposes, not to modify
content.

With the use of default values, an instance that previously may not have included a particular
element or attribute will specify its default value after going through an XML processor. The
author of the instance may or may not have intended for this insertion to occur, leading to
potential confusion and unintended consequences . The use of default values has also been known
to conflict with binding tools and transformations, often leading implementers to strip them from
their implementation schemas. To avoid these issues, OpenTravel prohibits the use of default
values.

4.4 Use of XML Schema

4.4.1 OpenTravel Specification Uses XML Schema
Guideline: The XML Schema recommendations from W3C should be used to define all XML
message documents.

Rationale:

 Schemas are written in XML syntax, rather than complex SGML regular expression
syntax.

 Because XML Schemas are themselves well-formed XML documents, they can be
programmatically generated and validated using a meta-schema -- a Schema used to
define other Schema models.

 XML Schemas have built-in data types and an extensible data-typing mechanism. (DTDs
understand only markup and character data.)

 Using XML syntax to define data model requirements allows for more constraints, strong
data typing, etc.

 XML Schemas provide for a consistent Data Repository syntax.

4.5 Global vs. Local Element Types

OpenTravel™ Alliance Schema Design Best Practices Specification Page 14

 2007-2010 OpenTravel™ Alliance www.opentravel.org

4.5.1 Simple and Complex Types
Guideline: Define XML Schema element types globally in the namespace for the elements that
are likely to be reused (instead of defining the type anonymously in the Element declaration).
This applies to both simpleType and complexType element type definitions.

Rationale: This approach supports a domain library or repository of reusable XML Schema
components. Also, since simpleType and complexType names are not contained in XML
instance documents, they can be verbose to avoid element type name collisions.

4.5.2 Type Attribute vs. Ref Attribute
Guideline: Define XML Schema elements as nested elements via the ‘type’ attribute or an inline
type definition (‘simpleType’ or ‘complexType’) instead of the ‘ref’ attribute that references a
global element.

Rationale: This approach for local element naming reduces the possibility of tag name collisions
and allows the creation of short tag names. Globally-defined elements should be reserved only
for travel domain elements with well-defined meanings; such global names should be constructed
with sufficient roots and modifiers to identify their domain of use and avoid tag-name collisions.

Example:
<xs:complexType name="AddressType">
 <xs:sequence>
 <xs:element name="StreetNmbr" type=” xs:string" minOccurs="0"/>
 <xs:element name="BldgRoom" type="PlaceID_Type"
 minOccurs="0"maxOccurs="unbounded"/>
 <xs:element name="AddressLine" type="AddressLineType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="CityName" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="PostalCode" type=" PostalCodeType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="StateProv" type=”StateProvinceType” minOccurs="0"/>
 <xs:element name="CountryName" type="CountryNameType” minOccurs="0"/>
 <xs:element name="PrivacyDetails" type="PrivacyType"/>
 </xs:sequence>
</xs:complexType>

4.5.3 Attribute Groups
Guideline: Define common attribute parameters globally as a reusable component via the XML
Schema ‘attributeGroup’ element definition.

Rationale: This approach supports a domain library or repository of reusable XML Schema
components. Also, since the names used for the XML Schema ‘attributeGroup’ components are
not contained in XML instance documents, they can be verbose to avoid name collisions with
other ‘attributeGroup’ definitions.

Example:
<xs:attributeGroup name="OTA_PayloadStdAttributes">
 <xs:attribute name="EchoToken" type="OTA_TokenType"/>
 <xs:attribute name="TimeStamp" type="xs:dateTime"/>
 <xs:attribute name="Target" default="Production">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="Test"/>

OpenTravel™ Alliance Schema Design Best Practices Specification Page 15

 2007-2010 OpenTravel™ Alliance www.opentravel.org

 <xs:enumeration value="Production"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Version" type="OTA_VersionType"
 use=”required”/>
 <xs:attribute name="SequenceNmbr" type="xs:integer"/>
</xs:attributeGroup>

4.6 Namespaces

4.6.1 OpenTravel Namespace
Guideline: All OpenTravel message Schemas are declared in one targetNamespace, which is
http://www.opentravel.org/OTA/2003/05. However, during the specification review period, the
domain name will include an extension of alpha or beta corresponding to member review and
public review respectively. If additional releases are necessary, they would continue with
gamma, delta, etc.

Starting with release 2003A, the year and month on this targetNamespace is set to the initial
publication of the 2003A OpenTravel specification (the baseline specification). This value will
not be changed in the subsequent releases, and the same namespace will also be used for new
messages. The only reason to change the namespace would be to deprecate the 2003 baseline
specification. This value would change to support the new OpenTravel baseline specification, an
action which should occur only on a 3- or 4-year cycle.

Rationale: This approach supports a consistent way to manage and identify OpenTravel XML-
based transaction assets both internally and externally (via trading partners and global e-business
repositories such as UDDI). It also avoids the need for explicit prefixes on both XML Schema
and XML instance documents.

Example:

 http://www.opentravel.org/OTA/2003/05
 or
 http://www.opentravel.org/OTA/2003/05/alpha

Usage:

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace=“http://www.opentravel.org/OTA/2003/05"
 xmlns=“http://www.opentravel.org/OTA/2003/05”
 version=“1.0”
 id=”OTA2003A”>

4.6.2 No Namespace for Common XML Schema Files
Guideline: There will be no namespace for any common OpenTravel data type .xsd Schema file.

Rationale: Common data type Schema files (i.e., type definitions only) are version independent
from message Schemas that may include them, and this content may be applied to multiple
versions of a message.

Example: The following example represents a header from an OpenTravel common Schema file.
The Schema is defined without any target namespace. As such, its content will be ‘coerced’ into
the namespace of any message Schema that includes it.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 16

 2007-2010 OpenTravel™ Alliance www.opentravel.org

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version=“4.123”
 id=”OTA2003A2003B”>

4.6.3 Use of OTA Namespace in Instance Documents
Guideline: Each XML instance document produced by the 'OTA' namespace Schemas should
specify a default namespace and that should be the 'OTA' namespace defined above. Also, a
namespace prefix of “ota:” is to be reserved for the ‘OTA’ namespace and used where ‘OTA’ is
required not to be a default namespace, to satisfy unique business needs.

Rationale: This approach provides a standard way for “OTA” namespace content to be merged
with other Industry or Trading Partner namespace content.

Example: The following example shows part of a header from an XML instance conformant to an
OpenTravel Schema (in this case, OTA_ReadRQ.xsd).
<OTA_ReadRQ xmlns="http://www.opentravel.org/OTA/2003/05"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
OTA_ReadRQ.xsd"
...>

4.7 Versioning XML Schemas

4.7.1 Version Attribute in XML Schema
Guideline: The <xs:schema> root element of OpenTravel Schema files will contain a ‘version’
attribute whose value will identify both the major version base and a minor version sequence
value.

Rationale: This approach enables easy identification of the two basic ways that an XML Schema
and conforming instance documents may change:

A) Extensions to a Schema via adding new content, which does not invalidate the
previous version (i.e., minor version change).

B) Structural content or data type changes where the previous content would not validate
against the new Schema (i.e., major version change).

Example: The following example describes the options above in further detail.
A) Multiple minor version messages of a particular base message Schema (or major
version) will all validate against the latest base Schema version (e.g., forward
compatibility: message versions ‘2.012’, ‘2.037’ and ‘2.050’ all validate against Schema
version ‘2.050’).

B) Version values for major changes ‘2.000’, ‘3.000’, ‘4.000’,…

The following example shows the header of an OpenTravel Schema file with a version of ‘2.000’.
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace=“http://www.opentravel.org/OTA/2003/05"
 xmlns=“http://www.opentravel.org/OTA/2003/05”
 version=“2.000”
 id=”OTA2003A”>

4.7.2 Version Attribute in Common XML Schema Files
Guideline: The ‘version’ attribute in the <xs:schema> root element of OpenTravel common data
type Schema files (e.g., OTA_CommonTypes.xsd) will contain an independent self-describing

OpenTravel™ Alliance Schema Design Best Practices Specification Page 17

 2007-2010 OpenTravel™ Alliance www.opentravel.org

version value (e.g., version=“19.127”, where ‘19’ is the major version and ‘127’ is the minor
version).

Rationale: Common data type Schema files (i.e., type definitions only) are version independent
from message Schemas that may include them, and this content may be applied to multiple
versions of a message.

Example: The following example shows the header of an OpenTravel common Schema file.
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 version="19.127"
 id="OTA2003A2003B">

4.7.3 Version Attribute in XML Instance Documents
Guideline: XML instance documents being validated against an OpenTravel message Schema
will contain a ‘Version’ attribute on the root element. The value of this attribute should map
directly to the value of the ‘Version’ attribute on the root ‘Schema’ element of the message
Schema being used for validation.

Rationale: This approach provides version correlation between XML instance message and the
corresponding XML Schema.

Example:

Schema value:
 version=”1.050”

matches instance value:
 version=”1.050”

4.7.4 ID Attribute in Message and Common XML Schema
Guideline: The ‘id’ attribute in the <xs:schema> root element of OpenTravel XML Schemas will
contain the release. The ‘id’ attribute in the <xs:schema> root element of OpenTravel common
data type XML Schemas will contain the range release. The OpenTravel specification manager
will update the ‘id’ attribute of all schemas to the current release prior to publishing the schemas.
The ‘id’ attribute is only found in the XML Schema, it is not used in the instance.

Rationale: This attribute indicates the release in which the XML Schema was published. It is
important to note that the ‘id’ attribute does not indicate if a message format has changed between
releases, this is determined by comparing the ‘version’ attribute in the <xs:schema> root element
of the XML Schemas.

Example:
Message schema files:
 id=”OTA2003A”

CommonType schema files
 id=”OTA2003A2003B”

4.7.5 Use of schemaLocation Attribute
Guideline: The attribute schemaLocation is to be used on elements in instances to name the
location of a retrievable Schema for that element associated with that namespace.

Rationale: This approach supports use of OpenTravel XML Schemas.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 18

 2007-2010 OpenTravel™ Alliance www.opentravel.org

Example:
Attribute:
xsi:schemaLocation=”http://www.opentravel.org/OTA http://www.opentravel.org/OTA/2002A-
REC/VEH- availability/VehAvailRateRQ-23.xsd”

4.8 Schema Markup and Annotations

4.8.1 Use of Annotation and Document Elements

Guideline: OpenTravel XML Schemas will use the <documentation> sub-element of the
<annotation> element for Schema documentation.

Rationale: Schema comments “<!--… -->” are not part of the core information set of a document
and may not be available or in a useful form.

Example:
<xs:annotation>
 <xs:documentation>Privacy sharing control attributes.
 </xs:documentation>
</xs:annotation>

4.8.2 Use of lang Attribute
Guideline: Documentation elements will include the xs:lang attribute. The initial value of the
attribute will be set to “en”.

Rationale: This approach allows for future inclusion of documentation in other languages.

Example:
xs:lang="en"

4.8.3 Meaningful Annotations
Guideline: OpenTravel requires that all complex types, simple types, elements, attribute groups,
attributes, and enumerations are meaningfully annotated.

 Complex type annotation: Describe the overall purpose of a complex type.

 Simple type annotation: Define the structure and its usage.

 Element annotation: Must describe the element in a meaningful manner so that the
trading parties, who may not always have full understanding of the business context of
the messages they are implementing, can understand the usage of the element.

 Attribute group: At the attribute group declaration, describe the overall functionality of
the grouping. Within the element where the attribute group is referenced, include a
description of the specific use of the attribute group.

 Attributes: Must include usage information.

 Enumerations: Provide an explanation of each value.

Rationale: These standards enable the readers of a Schema to understand the usage of each data
item.

Example:
<xs:element name="SeatMapDetails" type="SeatMapDetailsType" maxOccurs="99">
 <xs:annotation>
 <xs:documentation xml:lang="en">This identifies the seat map details for the
flight segment in the corresponding 'FlightSegmentInfo' element. If the responding system

OpenTravel™ Alliance Schema Design Best Practices Specification Page 19

 2007-2010 OpenTravel™ Alliance www.opentravel.org

has different seat maps for different passengers for the same flight segment then this
element will recur accordingly. The availability of seats can differ based upon various
conditions, such as a passenger's status within a loyalty program or by the amount paid
or class of service booked for the ticket. For example, if one passenger has a certain
status in the Frequent Flyer program of the airline, certain desirable seats may be
available for selection. A passenger without such status may not be able to select those
seats. Thus the availability of seats can differ by passenger. </xs:documentation>
 </xs:annotation>

</xs:element>

4.8.4 Annotation of Typed Elements
Guideline: Annotation of elements that are typed should reflect the specific usage of that
complex or simple type at that location. If there is no additional specific usage information, then
the global annotation found at the complex or simple type must be duplicated at the element level.

Rationale: This approach enables the readers of a Schema to understand the usage of a typed
element in its specific context.

Example: The following example shows a complexType ‘AirItineraryType’ as defined in an
OpenTravel common Schema file. The ‘AirItinerary’ element following it is based on that
complexType and contains a shorter annotation that describes only contextual usage of the
content.
<xs:complexType name="AirItineraryType">
 <xs:annotation>
 <xs:documentation xml:lang="en">Specifies the origin and destination of the
traveler. Attributes: DirectionInd - A directional indicator that identifies a type of
air booking, either one-way, round-trip, or open-jaw with the enumeration of (OneWay | RT
| OpenJaw) respectively. ActionCode - Indicates the status of the booking, such as OK or
Wait-List. NumberInParty - Indicates the traveler count. </xs:documentation>
 </xs:annotation>
 ...
</xs:complexType>

<xs:element name="AirItinerary" type="AirItineraryType">
 <xs:annotation>
 <xs:documentation xml:lang="en">A collection of all flight segments requested for
booking.</xs:documentation>
 </xs:annotation>
</xs:element>

4.8.5 Annotations of Root Elements
Guideline: The root element of each RQ message shall include an overall description of the
functionality of the message pair. If an RS message (e.g., OTA_ErrorRS) does not have a
companion RQ message, then the full description of the message is to be included in the RS.

Rationale: This approach enables the readers of a Schema to understand the functionality of a
message.

Example: The following example shows message-level annotation for the OTA_HotelAvailRQ
Schema file.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.opentravel.org/OTA/2003/05/alpha"
xmlns="http://www.opentravel.org/OTA/2003/05/alpha"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
version="1.001" id="OTA2004A">
 ...
 <xs:element name="OTA_HotelAvailRQ">
 <xs:annotation>
 <xs:documentation xml:lang="en">Requests availability of hotel properties by
specific criteria that may include: dates, date ranges, price range, room types, regular
and qualifying rates, and/or services and amenities. The availability message can be used

OpenTravel™ Alliance Schema Design Best Practices Specification Page 20

 2007-2010 OpenTravel™ Alliance www.opentravel.org

to get an initial availability or to get availability for the purpose of modifying an
existing reservation.</xs:documentation>
 </xs:annotation>
 ...
 </xs:element>

4.8.6 Use of “may be”
Guideline: The term “may be” is used only to indicate a possible use of an element or attribute;
it does not denote that the element or attribute is optional. Optionality is defined in the Minimum
Occurrence (MinOcc) indicator of the element and the Use indicator of the attribute.

Rationale: Consistency in terminology helps eliminate confusion between usage and optionality.

Example:
 “May be used to give further detail on the code or to remove an obsolete item.”

4.8.7 Reference to Code Tables
Guideline: When the OTA_CodeType type is used, the following annotation must be included:
"Refer to OpenTravel Code List n..n (xxx)" where n..n is the name of an OpenTravel Code List
and xxx is its 3-character identifier.

Rationale: This reference enables the reader or implementer of a Schema to find the code values
of the referenced OpenTravel code table (within either the code list spreadsheet or the XML
instance document).

Example:
Refer to OpenTravel Code List Room Amenity Type (RMA).

4.8.8 No Use of Processing Instructions
Guideline: OpenTravel XML Schemas will avoid the use of Processing Instructions (PI) by
replacing them with the <appinfo> sub-element of the <annotation> element that supplies this
functionality.

Rationale: <appinfo> elements are available to users of the Schema. PIs require knowledge
of their notation to be parsed correctly. Extensions to the XML Schema can be made using
<appinfo>. An extension will not change the Schema-validity of the document.

4.9 Enumerations vs. Code Lists

4.9.1 Use of Enumerations
Guideline: Enumerations are used in the case where the list of values is static or there is little
likelihood that additional values will be added.

Rationale: This method allows for the values to be validated.

Example:
<xs:attribute name=“Gender” use=“optional”>
 <xs:simpleType>
 <xs:restriction base=“xs:NMTOKEN”>
 <xs:enumeration value=“Male”/>
 <xs:enumeration value=“Female”/>
 <xs:enumeration value=“Unknown”/>

OpenTravel™ Alliance Schema Design Best Practices Specification Page 21

 2007-2010 OpenTravel™ Alliance www.opentravel.org

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

4.9.2 Use of Code Lists
Guideline: Code lists are used in the case where the list of values is dynamic or there is great
likelihood that additional values will be added.

Rationale: This method allows for new codes to be added and used between releases.

Example:
Communication Location Type
1 Home
2 Business
3 Other

4.10 Code Lists

4.10.1 Name of Code List Table
Guideline: The name of a code list table should be the same or similar to the name of the
attribute in XML Schema, but should be in plain English with spaces between the words.

Rationale: This approach provides the reader or implementer with better understanding of how
the code values are used.

Example:

Code set name Coverage Type for <xs:attribute name="CoverageType" type=”OTA_CodeType”/>
Code set name Phone Technology Type for <xs:attribute name="PhoneTechType"
type=”OTA_CodeType”/>

4.11 OpenTravel General

4.11.1 Required Attributes of XML Instance Root Elements
Guideline: The root element of all OTA payload documents (XML instance messages), must
contain the following attributes:

 xmlns=”http://www.opentravel.org/OTA/2003A/05”

 Version=”[current version here]”

 xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

 xsi:schemaLocation=”http://www.opentravel.org/…”

Rationale: This format provides a standard way to identify OpenTravel payload messages,
message version, and the corresponding XML Schema.

Example:
<OTA_VehAvailRateRQ
 xmlns=”http://www.opentravel.org/OTA”
 Version=”1.001”
 Xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.opentravel.org/OTA
http://www.opentravel.org/OTA/2002A-REC/VEH-availability/VehAvailRateRQ.xsd”>

OpenTravel™ Alliance Schema Design Best Practices Specification Page 22

 2007-2010 OpenTravel™ Alliance www.opentravel.org

 <!-- Payload content… -->
</OTA_VehAvailRateRQ>

4.11.2 Use of TPA_Extensions
Guideline: Trading partner-specific data can be included in an XML instance message within the
<TPA_Extension> global element at OpenTravel-sanctioned plug-in points defined in the
XML Schema. This element may also contain the Boolean attribute ‘mustProcess’, which
notifies that the message receiver must process the ‘TPA_Extension’ data.

TPA_Extension content implemented by specific Trading Partners should be cycled back into the
appropriate OpenTravel workgroup for consideration to be incorporated into the specification.

Rationale: This approach (along with the versioning Guideline of VI-2) provides a standard way
for OpenTravel to integrate and manage specific trading partner information.

By filtering the trading partner content back into the workgroups, the specification will better
reflect the business needs of the OpenTravel stakeholder community. Additionally, companies
will enhance their interoperability by aligning to the published specification as opposed to
TPA_Extension content.

Example: Schema fragment:
<xs:element name="TPA_Extension" type=”xs:anyType”>

Sample XML:
<OTA_VehResRQ xmlns=”http://www.opentravel.org/OTA/2003/05”
 Version=”1.23”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.opentravel.org/OTA
http://www.opentravel.org/OTA/2002A-REC/VEH-booking/VehResRQ-Tze123.xsd”>
 <POS>
 <Source PseudoCityCode=”ABC123” AgentSine=”123456789”/>
 <UniqueId URL=”http://switch.com/OTAEngine/”
 Type=”VehResRQ” Id=”123456”/>
 <BookingChannel Type=”GDS”/>
 </Source>
 <TPA_Extension mustProcess=”1”>
 <NegotiatedService Type=”TourGuideDriver”/>
 </TPA_Extension>
 </POS>
 <VehRequest>
 <!—OTA VehRequest content -->
 </VehRequest>
</OTA_VehResRQ>

4.11.3 Standard Simple Types vs. OpenTravel Simple Types
Guideline: Wherever possible, OpenTravel Schema data types should use the standard built-in
simple types defined in the XML Schema specification.

Rationale: This approach simplifies OpenTravel message implementation because validation
tools support built-in XML Schema simple types.

4.11.4 New Data Types Based on Extending Existing Types
Guideline: Create new Schema data types by using or extending existing OpenTravel type
definitions or from built-in XML Schema types whenever possible.

Rationale: This technique maximizes reuse and avoids duplicating definitions.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 23

 2007-2010 OpenTravel™ Alliance www.opentravel.org

4.11.5 Simple Type Restrictions
Guideline: OpenTravel XML Schemas should avoid rigid simpleType restrictions unless the type
is a common industry standard which is unlikely to change.

Rationale: This approach allows OpenTravel messages to interoperate globally in a more
seamless manner and allows any particular trading partner to locally restrict content values as
needed for unique business requirements.

Example: The following example represents a valid type restriction since Day of the Week is a
common industry standard and is unlikely to change:
<xs:simpleType name="DayOfWeekType">
 <xs:annotation>
 <xs:documentation xml:lang="en">A three letter abbreviation for the days of the
week (e.g. may be the starting date for the availability requested, days of operation,
rate effective day, etc.).</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="Mon"/>
 <xs:enumeration value="Tue"/>
 <xs:enumeration value="Wed"/>
 <xs:enumeration value="Thu"/>
 <xs:enumeration value="Fri"/>
 <xs:enumeration value="Sat"/>
 <xs:enumeration value="Sun"/>
 </xs:restriction>
</xs:simpleType>

4.11.6 Deprecation Policy
Guideline: Any construct (e.g. attribute, element, simpletype, complextype) requiring
deprecation shall be annotated in the Schema with the following annotation:
<xs:documentation xml:lang="en">
 <DeprecationWarning>Candidate for removal, usage is not recommended. Deprecation
Warning added in 2005B.
 </DeprecationWarning>
</xs:documentation>

The following shall be done to document the deprecation intention:

 Any company registered as using a message with a candidate for removal should be
notified of the intention to remove the construct.

 If no registration of a message is documented, due diligence to determine if in fact there
are implementations will be served by sending an email via the OpenTravel maintained
mail distribution lists to the most appropriate work group(s).

The period of time from which the depreciation is highlighted and any users of the construct
notified, to the time of the actual deprecation shall be no less than one public review comment
cycle (e.g. notification would be sent before public review and if no feedback is received by the
end of public review, the construct may be deprecated for the Publication).

The Publication change file shall include all deprecation candidates and deprecated constructs.

Rationale: This will provide a consistent and well-published mechanism by which content can be
removed from the OpenTravel specification. Also, existing implementations of the OpenTravel
specification will be made aware of content marked for deprecation.

OpenTravel™ Alliance Schema Design Best Practices Specification Page 24

 2007-2010 OpenTravel™ Alliance www.opentravel.org

4.11.7 License Agreement Documentation
Guideline: All OpenTravel Schema files include a distinct message level annotation that
references the OpenTravel License Agreement
(http://www.opentravel.org/Specifications/Default.aspx).

Rationale: With the 2004A publication, all OpenTravel Schema files are accessible directly from
the OpenTravel public site without having to download a .zip file. Each Schema file is associated
with a uniquely resolvable URL. For instance, the OTA_SimpleTypes.xsd file is accessible at:
www.opentravel.org/OTA_SimpleTypes.xsd.

Providing a reference to the License Agreement in ALL OpenTravel Schema files will ensure that
users of the specification are aware of the stipulations by which it is made publicly available.

Example: The following example shows the header of the OTA_CommonTypes.xsd file with the
License Agreement reference included in the documentation.
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
version="1.001" id="OTA2003A2003B">
 <xs:include schemaLocation="OTA_SimpleTypes.xsd" />
<xs:annotation>
 <xs:documentation xml:lang="en">All Schema files in the OpenTravel Alliance
specification are made available according to the terms defined by the OpenTravel License
Agreement at http://www.opentravel.org/Specifications/Default.aspx.</xs:documentation>
 </xs:annotation>
 ...

